
© 2012 Carnegie Mellon University

Fuzz Testing:
Vulnerabilities and
Exploit mitigation
Will Dormann [wd@cert.org]

2

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

3

Outline
•  Vulnerability Analysis
•  Fuzz Testing

— BFF

— FOE

•  Real-world fuzzing example
•  Exploitation protection

— Microsoft EMET

•  Future plans

4

Vulnerability Analysis at
CERT

5

CERT Vulnerability Analysis

Discovery Disclosure Remediation

Mission: Reducing the birth rate and increasing the
death rate of software vulnerabilities

6

Software systems continue to be plagued by
security vulnerabilities caused by underlying
software defects

Goals:
•  Help vendors and developers discover vulnerabilities

before software is fielded

•  Reduce the cost of improving software assurance

Vulnerability Discovery

7

Vulnerability Discovery
Develop and improve practical tools and techniques
to find software vulnerabilities

•  Static analysis

•  Dynamic analysis
— Current focus is on fuzz testing

Software security quality assurance
•  Feeds back into the vulnerability remediation process

8

Fuzz Testing

9

Fuzz Testing
Providing unexpected, invalid, or random data to an
application with the intention of finding bugs.

•  Unexpected behavior
•  Crashes

— Buffer overflows

— Integer overflows

— Format string

Vulnerabilities

10

Types of Fuzzing
Mutation (“dumb”)

•  Semantics-less modification of input – “flip random bits”

Generational
•  Semantics-aware modifications of input – “protocol and

format aware”

Concolic – concrete and symbolic
•  Using symbolic representation for code coverage

While the least sophisticated, CERT continues to
focus on mutation fuzzing due to a continued high
success rate

11

Mutation Fuzzing Challenges
Much of the research into black-box negative input
software testing (i.e., fuzz testing) has focused on
making tools more aware of the protocol or data
structure they are targeting

•  Incurs high up-front costs to model input/protocol
•  Easy to omit large branches of test cases

Developers require very generic fuzz testing tools
that can apply to lots of software

12

Mutation Fuzzing Challenges (2)
Mutational fuzz testing produces thousands or even
millions of crashing test cases that need to be
identified

•  A majority of the results are duplicates resulting from the
same underlying software defect

•  Developers and researchers need a metric of
exploitability

13

Create very generic fuzz testing tools that can
apply to lots of software

Be entirely blind to context and underlying protocol

Apply core principles of fuzz testing to a broader
range of software and improve their overall efficacy

Use feedback from the cumulative performance of
a testing campaign as input to the mutation
algorithm and seed file selection

CERT’s Approach

14

Fuzzing Basics
1.  Mangle input (mutate or generate)

1.  Choose input file to mangle
2.  Decide how much to mangle it

2.  Run target application
3.  Detect exceptions (did it crash?)
4.  Filter out non-unique crashes (is it new?)
5.  Triage severity (how exploitable is it?)

15

Fuzzing on Linux and OS X:
The CERT BFF

16

Fuzz Testing
Problem:
Fuzzing isn’t rocket science, but it does require work
to set up a fuzzing environment.

Solution:
The CERT® BFF
https://www.cert.org/vuls/discovery/bff.html

17

Basic Fuzzing Framework

* It’s not you, it’s me

18

BFF Components
Debian Linux virtual machine (VMware)

•  Optimized for fuzzing
•  zzuf, valgrind, gdb
•  Software watchdog

Fuzzing scripts
•  Testcase generation
•  Process killer
•  Crash verification
•  Crash deduplication
•  Crash minimization

19

Perform multiple levels of results reduction
•  Normalize results and remove duplicates
•  Minimize crashing input to the minimum bytes to reproduce the crash

Sort final unique results by exploitability and
clusters of crashes – “hot spots”

BFF Architecture

20

BFF Requirements
Prerequisites:

•  Ability to unzip a file
•  Ability to power on a VMware virtual machine

21

BFF on OS X

22

Flash Fuzzing VM

23

Fuzz Testing Variables and
Solutions

24

Fuzzing Variables
Fuzzing effectiveness depends on many variables:

•  Fuzzer
•  Mutation strategy
•  Seed File

•  Program used to generate

•  Options used for generation

•  Size

25

Seed file selection
Some input files reveal more unique crashes under
fuzzing than others

•  Different files induce different code coverage

Objective: Focus attention on the files that are more
productive

26

Seed file selection method
Model fuzzing as Bernoulli trials and unique crashes as
Poisson-distributed random events

For each seed file, maintain a confidence interval on the
expected crash density based on empirical measurement
during the course of a fuzz campaign

Choose seed files with likelihood in proportion to their
expected crash density

Result: Seed files that yield more crashes get more attention

Paper to be submitted to ISSTA-2012

27

How much to mangle?
Too much:

•  ‘breaks the file’ à missing code coverage
•  Some bugs won’t be found

Too little:
•  Results take too long
•  Some bugs won’t be found

28

Solution: Rangefinder
Segment proportion of file to be fuzzed into ranges

•  fuzz 1 bit all the way up to ~100% of the bits
•  range widths grow exponentially

Prefer higher granularity at lower proportion of
mangled bits

Each unique crash encountered increases range
score

Pick next range based on probability distribution
derived from the range’s score

29

Ranges are
exponentially sized

(1.0, 1.6, 2.6, 4.2, 6.9,
11.1, 17.9, …)

Each range starts out
with equal probability, so

the fuzzing naturally
skews towards lower

number of bits fuzzed.

Range selection probabilities adjust
dynamically once we start finding crashers

Exponential range
sizes give us higher

resolution at low
number of bits fuzzed

30

Successful ranges
should get more

attention…

…but don’t lock in
too quickly

31

Problem: Volume of crashing test cases

File fuzzing can yield a large number of crashing test
cases

Improvements to BFF have dramatically increased
the number of crashes available for analysis

•  BFF run on widely-used open-source J2K codec yielded
111 unique crashers in a few days

Our capacity to find crashes outstrips our ability to
analyze them using traditional human-oriented
techniques

32

Where to start?

33

Solution: lightweight automated analysis

Perform a quick automated analysis to find test cases
that present security vulnerabilities
For each test case

1.  Run crashing test case under a debugger
2.  Examine application state
3.  Determine “exploitability”

34

Existing solutions for Windows and OSX

Windows
•  WinDbg + MSEC !exploitable extension
•  Used by CERT FOE

OSX
•  Apple CrashWrangler
•  Used by CERT BFF on OSX

Linux
•  Couldn’t find anything that does this exactly
•  Valgrind memcheck, (rumored) private debuggers

35

Solution for Linux: CERT triage tools
“exploitable” extension for GDB

•  GDB is the most widely available debugger for Linux
•  Implemented on nascent GDB Python API available in

versions > 7.1
•  Determines exploitability of a single test case

“triage” example batch script
•  Python script that wraps multiple calls to GDB +

exploitable
•  Determines exploitability of a corpus of crashing test

cases

36

“exploitable” output

37

“triage” output

38

Test case minimization
Why minimize?

•  Fuzzed test cases can significantly alter the code
coverage through the executable

•  Many of those differences may not be relevant to the
crash

Goal: Find the test case that
(1)  is minimally different from the known good seed file
(2)  still causes the same crash

➜  ‘same crash’ = match the last N entries in back trace

 (we typically choose N=5)

39

Steps to a solution
Figure out how much to attempt to revert based on
what we know (or can guess)

Test to see if we still see the same crash

Iterate and update strategy based on what we learn

40

What Minimizer Does
Known good seedfile – does not cause crash

Fuzzed file – causes crash, many changed bytes are not involved in the crash

Minimized fuzzed file – causes same crash, all changed bytes are involved in the crash

Fuzz

Minimize

original byte

fuzzed byte

crash byte

41

The minimizer attempts to
maximize the number of bits it
reverts (current try) based on

what it has learned (target guess)
about the target it is trying to hit.

Eventually the minimum
found matches our target
guess and we’re done.

42

Minimize to string
Standard minimization gives the minimally-different-
from-seed-file test case. But which of those bytes are
irrelevant to the crash?

We want to know:

•  Bytes required for processing (Structure)
•  Bytes required to trigger crash (Vulnerability)

43

What Minimize-to-String Does
Known good seedfile – does not cause crash

Fuzzed file – causes crash, many changed bytes are not involved in the crash

Minimized-to-string file – causes same crash, replaces non-structure bytes

Fuzz

Minimize-to-string

insert shellcode here

original byte

fuzzed byte

crash byte

non-structure byte

44

Minimize to string example

45

Minimize to string downside
It’s a more complex problem to solve.

•  It’s slow!

Mitigation:
Only run it for cases that you want to write a PoC for.

46

Writing a PoC
Achieving code execution with a memory corruption
vulnerability requires two pieces of knowledge:

1.  What bytes are under my control?
2.  How do I get there?

47

The original crash

48

The minimized-to-string crash

49

Which 0x78787878 ?
Minimization to x shows:

•  Which bytes are under my control (‘xxxx…’)
•  How to get there (JMP ECX)

The problem:
Which ‘x’ is which?

The solution:
Metasploit string pattern.

50

The minimized-to-Metasploit crash

51

The minimized-to-Metasploit crash

52

Fuzzing on Windows:
The CERT FOE

53

Enter the FOE
Failure Observation Engine (FOE)
https://www.cert.org/vuls/discovery/foe.html

•  Windows-compatible
•  Functional decomposition of BFF (and zzuf)
•  Python (and a bit of C)
•  Easy to use

1.  Pick seed files to mutate

2.  Enter target app command line

3.  Go!

54

Exception Detection
Debuggers

•  Slow (sometimes)
•  Foiled by anti-RE tricks
•  Heisenbugs

Exception handler hooks
•  Fast
•  Less likely for anti-RE to detect
•  Not very informative (yet)

55

Exception Detection - Hook
KiUserExceptionDispatcher()

•  Called in userland before process exception handling

Installation
1.  Use AppInit_DLLs registry value to load hook DLL
2.  Overwrite first few instructions to jmp to our trampoline

code

Trampoline: Do we care about the exception?
•  Yes: Kill the process (group) with the exception code
•  No: Pass exception to target application

56

Uniqueness Determination
MS !exploitable debugger extension

•  http://msecdbg.codeplex.com/

!exploitable hash
•  Based on current instruction pointer, other state
•  Form: Major.Minor
•  E.g. 0x2472222b.0x134c461c

Cannot unique true heisenbugs

57

Exploitability
!exploitable “Exploitability Classification”

•  Based on exception type and properties
— Read A/V on eax near NULL =

PROBABLY_NOT_EXPLOITABLE

— Write A/V not near NULL = PROBABLY_EXPLOITABLE

— Read A/V on instruction pointer not near NULL =
EXPLOITABLE

•  Assumes all inputs to faulting instruction are attacker
controlled (tainted)

•  Errs on false positive side

58

Interesting crashes
Problem: Even with !exploitable crash categorization,
you may have too many results to sift through.

Solution: drillresults.py

•  Select interesting exceptions
•  Look for byte patterns that match fuzzed file
•  Rank interesting crashes

59

drillresults.py output
0x1c636361.0x1a2f7629 - Exploitability rank: 10
Fuzzed file: results\oi-multi-2\PROBABLY_EXPLOITABLE
\0x1c636361.0x1a2f7629\sf_7fd23297537035d4d1ed899c4838d862.lwp
exception 0: TaintedDataControlsCodeFlow accessing 0x00080800 *** Byte pattern is in fuzzed file!

1034ea66 8b01 mov eax,dword ptr [ecx] ds:0023:00080800=???????? Code executing in: C:\1-ix\redist
\lwpapin.dll

0x607f0d37.0x510f346f - Exploitability rank: 20
Fuzzed file: results\oi-multi-2\EXPLOITABLE\0x607f0d37.0x510f346f
\sf_1903537138d91f0dadd9511d3b7522ed.cdr
exception 0: WriteAV accessing 0x00130000 *** Byte pattern is in fuzzed file! ***
00c97be7 880417 mov byte ptr [edi+edx],al ds:0023:00130000=41
Code executing in: C:\1-ix\redist\vsgdsf.dll
exception 1: ReadAVonIP accessing 0x00003ff0 *** Byte pattern is in fuzzed file! ***
00003ff0 ?? ???
Instruction pointer is not in a loaded module!

0x0b535856.0x02751235 - Exploitability rank: 30
Fuzzed file: results\oi 8.3.7.77-noefa\PROBABLY_EXPLOITABLE
\0x0b535856.0x02751235\sf_4a4baf4f7167552d1144a9fefa29f9bf-69152-0x00000000.sxd
exception 0: TaintedDataControlsCodeFlow accessing 0x00000000 *** Byte pattern is in fuzzed file!

0140c574 8b11 mov edx,dword ptr [ecx] ds:0023:00000000=????????
Code executing in: C:\1-ix\redist\DEVECT.DLL

60

The CERT® FOE

61

The CERT® FOE

62

Microsoft SDL

The Microsoft SDL recommends Fuzz testing.

63

Microsoft MiniFuzz

64

MiniFuzz vs. FOE

Unique Crashes Seconds until first
crash

MiniFuzz 1 74520

FOE 59 60

FOE 2.0 99 3

~1 day of Fuzzing Oracle Outside In

65

A Real-world FOE Example

66

The Target
Oracle Outside in

•  Decodes over 500 different file types
— Large attack surface

•  Used by a variety of applications
— Oracle Fusion Middleware

— Novell Groupwise

— Microsoft Exchange

— Guidance Encase Forensics

— AccessData FTK

— Paraben Device Seizure

67

Fuzzing results
Unique crashes found through 30 hours of fuzzing
with FOE:

•  24 EXPLOITABLE
•  40 PROBABLY_EXPLOITABLE
•  67 UNKNOWN
•  10 PROBABLY_NOT_EXPLOITABLE

•  141 Total unique crashes

68

Exploiting vulnerabilities
Get control of Instruction Pointer (EIP)

•  Control of EIP == Control of execution
•  Point EIP to attacker’s code (shellcode) : attacker’s code

executes

69

Exploiting vulnerabilities
Memory layout:

Application code

Loaded Document

Shellcode

EIP

70

An interesting bug
Eight hours into the fuzzing run, in the Lotus 123 v.6
file parser (vswk6.dll):

Exception Faulting Address: 0x284c584e!

First Chance Exception Type: STATUS_ACCESS_VIOLATION (0xC0000005)!

Exception Sub-Type: Read Access Violation!

!

Description: Read Access Violation at the Instruction Pointer!

Short Description: ReadAVonIP!

Exploitability Classification: EXPLOITABLE!

71

Proof-of-Concept Exploit

72

Exploitation Protections

73

Protection #1: DEP
Data Execution Prevention

•  Do not execute memory locations that do not have
execute permissions

•  Requires processor support: NX bit
•  Applications must opt-in

74

DEP Protection
Memory layout:

Application code
 (executable)

Loaded Document

Shellcode

EIP

(not executable)

DEP Violation
Program Terminated

DEP: ON

75

Time to go home!
DEP solves the problem, right?

76

Return Oriented Programming
Use pieces of existing executable code to accomplish
your goal of bypassing DEP. Several techniques can
be used, including:

•  Turn off DEP
•  Mark memory as executable
•  Allocate new executable memory
•  Copy shellcode to executable memory

Outcome: Executable shellcode

77

Exploiting vulnerabilities
Memory layout:

EIP

Application code
 (executable)

Loaded Document

Shellcode

Turn Off DEP
(executable)

(not executable)

DEP: ON DEP: OFF

78

Protection #2: ASLR
Address Space Layout Randomization

•  Executable modules loaded at randomized location
•  Breaks ROP

79

Exploiting vulnerabilities
Memory layout:

EIP
Application code
 (executable)

Loaded Document

Shellcode

Turn Off DEP
(executable)

(not executable) DEP: ON

Invalid Instruction
Program terminated

Application code
 (executable)

Loaded Document

Shellcode

Turn Off DEP
(executable)

(not executable)

ASLR: ON

80

Exploit Mitigation
DEP and full ASLR together help prevent exploitation
of vulnerabilities.

•  DEP without ASLR is not effective
— Vista or later is required for ASLR

•  ASLR without DEP is not effective
•  Every loaded module needs to opt in to ASLR

81

Exploit Mitigation Report Card

DEP ASLR Exploit Mitigation?

Encase 6 No + No = No

Encase 7 No* + No = No

FTK 3.3 Yes + No = No

FTK 3.4 Yes + No = No

Device
Seizure

No + No = No

* DEP Enabled on Vista or later

Default software installation

82

Everybody Fails

83

Vulnerability Exploit protection
What do we know about vulnerability protection?

•  Vendors don’t always opt in to exploit mitigations
•  Vendors don’t fix known vulnerabilities in a timely

manner
•  We want protection from unknown vulnerabilities

84

Microsoft EMET
Don’t be at the mercy of your software vendors.
Microsoft Enhanced Mitigation Experience Toolkit can
force-enable:

•  DEP
•  ASLR (Vista and newer)
•  SEHOP
•  Additional exploit mitigations

http://support.microsoft.com/kb/2458544

85

Microsoft EMET

86

Exploit Mitigation Report Card

DEP ASLR* Exploit
Mitigation?

Encase 6 Yes + Yes = Yes

Encase 7 Yes + Yes = Yes

FTK 3.3 Yes + Yes = Yes

FTK 3.4 Yes + Yes = Yes

Device
Seizure

Yes + Yes = Yes

* ASLR Enabled on Vista or later

Configured with EMET

87

Everyone’s a winner!

88

ASLR Requires Vista or Newer

Windows XP (Server 2003) does not
support ASLR!

89

ROP Mitigations
EMET 3.5 introduces explicit ROP mitigations

90

EMET Without ROP Mitigations

91

EMET With ROP Mitigations

92

Use EMET to stay safe
The way to more safely run applications on Windows
is to use EMET!

•  Minimize risk of delayed patching
•  Protect against known vulnerabilities
•  Protect against 0day vulnerabilities
•  Protect against future vulnerabilities
•  EMET 3.5 ROP protection buys time for migration off of

Windows XP

93

Lessons Learned and
Future Plans

94

BFF Victims Successes
Crashes with evidence of exploitability:
•  Apple Mac OSX
•  Adobe Reader
•  Adobe Flash
•  Foxit Reader
•  Xpdf / Evince / Poppler
•  ImageMagick
•  JasPer
•  Clamav
•  Swfdump
•  File

•  Microsoft / Intel Indeo codec
•  VMware vmnc codec
•  Apple QuickTime
•  Apple Preview
•  Microsoft Office
•  OpenOffice
•  openjpeg
•  ffmpeg (mplayer, VLC,
ffdshow, etc.)

95

FOE Victims Successes
Crashes with evidence of exploitability:
•  Adobe Reader
•  Adobe Flash
•  Adobe Shockwave
•  Foxit Reader
•  SumatraPDF
•  LibreOffice
•  Iceni Argus
•  Microsoft Paint
•  Microsoft Picture and Fax
Viewer

•  Microsoft Office
•  Microsoft Windows
•  Oracle OpenOffice
•  Oracle Outside In
•  Autonomy Keyview
•  RealNetworks RealPlayer
•  Winamp
•  Java
•  ffdshow
•  Google Chrome

96

Lessons Learned
Throughput is king

•  Minimize I/O
•  CPU-bound
•  Increase code coverage

Techniques:
•  Web browser JavaScript that closes browser
•  Print to Null printer
•  Output to /dev/null
•  Export / convert file

97

Lessons Learned
Everything is broken

•  Dumb fuzzing shouldn’t be so effective

Defense in depth:
•  Runtime mitigations
•  Compile-time mitigations
•  Continuous fuzzing

98

Fuzzing Obstacles
GUI applications

•  When is it “done” ?

Crashes vs. vuls
•  More crashes

Can we handle all of the output?

99

Future Plans
Planned improvements for the BFF and related
projects:

•  Code coverage awareness
•  Distributed fuzzing
•  Improved crash triage and exploitability
•  Multiple mutation strategies
•  Brute-force determination of bytes that affect the faulting

address
•  Optimized pattern for cycling through bytes (inverse Gray

code)

100

For More Information
Visit CERT® web sites:
http://www.cert.org/vuls/discovery/
http://www.cert.org/blogs/certcc/
https://www.cert.org/vuls/discovery/bff.html
https://www.cert.org/vuls/discovery/foe.html

Contact Presenter
Will Dormann
wd@cert.org
(412) 268-8922

Contact CERT:
Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh PA 15213-3890

